On the non-degeneracy of radial vortex solutions for a coupled Ginzburg-Landau system

نویسندگان

چکیده

For the coupled Ginzburg-Landau system in \begin{document}$ {\mathbb R}^2 $\end{document} style='text-indent:20px;'> \begin{document}$ \begin{align*} \begin{cases} -\Delta w^+ +\Big[A_+\big(|w^+|^2-{t^+}^2\big)+B\big(|w^-|^2-{t^-}^2\big)\Big]w^+ = 0, \\ w^- +\Big[A_-\big(|w^-|^2-{t^-}^2\big)+B\big(|w^+|^2-{t^+}^2\big)\Big]w^- \end{cases} \end{align*} $\end{document} style='text-indent:20px;'>with following constraints for constant coefficients id="FE2"> A_+, A_->0,\ B^2<A_+A_-,\ t^+, t^->0, style='text-indent:20px;'>the radially symmetric solution id="M2">\begin{document}$ w(x) (w^+, w^-): \rightarrow\mathbb{C}^2 of degree pair id="M3">\begin{document}$ (1, 1) was given by A. Alama and Q. Gao J. Differential Equations 255 (2013), 3564-3591. We will concern its linearized operator id="M4">\begin{document}$ {\mathcal L} around id="M5">\begin{document}$ w prove non-degeneracy result under one more assumption id="M6">\begin{document}$ B<0 $\end{document}: kernel id="M7">\begin{document}$ is spanned functions id="M8">\begin{document}$ \frac{\partial w}{\partial{x_1}} id="M9">\begin{document}$ w}{\partial{x_2}} a natural Hilbert space. As an application result, solvability theory id="M10">\begin{document}$ be given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-vortex non-radial solutions to the magnetic Ginzburg-Landau equations

We show that there exists multi-vortex, non-radial, finite energy solutions to the magnetic Ginzburg-Landau equations on all of R2. We use Lyapunov-Schmidt reduction to construct solutions which are invariant under rotations by 2π k (but not by rotations in O(2) in general) and reflections in the x− axis for some k ≥ 7. 1 Ginzburg-Landau equations 1.

متن کامل

Minimality and Non-degeneracy of Degree-one Ginzburg-landau Vortex as a Hardy’s Type Inequality

We consider the unique radially symmetric degree-one solution w(x) = U(r)e of the Ginzbug-Landau equation in R ∆w + (1− |w|)w = 0, |w(x)| → 1 as |x| → +∞. We provide an elementary proof of its locally minimizing character and non-degeneracy up to the obvious invariance of the equation, in the natural Hilbert space for its second variation bilinear form. The proof reduces to an optimal vector-va...

متن کامل

Bifurcating Vortex Solutions of the Complex Ginzburg-landau Equation

It is shown that the complex Ginzburg-Landau (CGL) equation on the real line admits nontrivial 2-periodic vortex solutions that have 2n simple zeros (\vortices") per period. The vortex solutions bifurcate from the trivial solution and inherit their zeros from the solution of the linearized equation. This result rules out the possibility that the vortices are determining nodes for vortex solutio...

متن کامل

Vortex solutions of the evolutionary Ginzburg-Landau type equations

We consider two types of the time-dependent Ginzburg-Landau equation in 2D bounded domains: the heat-flow equation and the Schrödinger equation. We study the asymptotic behaviour of the vortex solutions of these equations when the vortex core size is much smaller than the inter-vortex distance. Using the method of the asymptotic expansion near the vortices, we obtain the systems of ordinary dif...

متن کامل

The Vortex Lattice in Ginzburg-Landau Superconductors

Abrikosov’s solution of the linearized Ginzburg-Landau theory describing a periodic lattice of vortex lines in type-II superconductors at large inductions, is generalized to non-periodic vortex arrangements, e.g., to lattices with a vacancy surrounded by relaxing vortices and to periodically distorted lattices that are needed in the nonlocal theory of elasticity of the vortex lattice. Generaliz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems

سال: 2021

ISSN: ['1553-5231', '1078-0947']

DOI: https://doi.org/10.3934/dcds.2021056